

the journey to fluency

When administering the fact fluency interviews, you will be assessing three things: number relationship strategies, accuracy, and automaticity.

1. NUMBER RELATIONSHIP STRATEGIES:

Moves beyond counting strategies

Understanding how to use counting strategies creates initial access to math problem solving for children. Whether they are counting all, counting on, counting back, or skip counting, children can initially use counting strategies to confidently solve problems. However, this strategy eventually is inefficient and more importantly, continued use of counting strategies delays number development. Thus, an important goal is to move students beyond using counting strategies prior to fluency practice.

Caution: If students practice math facts through drill when counting is the only strategy available, they often simply get faster at counting. Instead, it is important for teachers to provide students with opportunities to investigate and think about number relationships prior to fluency work.

Uses number relationship strategies

Thinking about number relationships and the meaning of operations is an integral part of math, and math fact study is one of the first areas that we encourage students to explore number relationships and practice using them.

Relational thinking strategies with math facts include: part-part-whole relationships (eg, 2 and 3 are parts of 5); composing and decomposing strategies to work to, from, and through 5 and 10 (eg. For 13-5, I think 13-3 and then 10-2 to get to 8); the use of doubles or other known facts to derive new facts (eg. for 4×6, I think 2×6 plus another 2×6); and compensating strategies (for 9×5, I think 10×5 minus 5). We also expect students to apply an informal understanding of the commutative property, the distributive property, and the relationship between different operations.

2. ACCURACY: The student's answers are accurate.

3. AUTOMATICITY: The student requires minimal thinking time, typically 3-5 seconds. The 3-5 second expectation may be extended for learners who require extended language processing time. *Take into account that students will need to read the problem

using the fact interviews

In administering the fact fluency interview, you will be discovering and documenting how a child is thinking which will give you important data for your instructional planning. Use the following basic codes to indicate accuracy, automaticity, and number relationship strategies when scoring the interview.

NUMBER RELATIONSHIP STRATEGIES

C AC is used to indicate that the student used counting strategies rather than number relationship strategies to get an answer. (See explanation to the left)

Placing a \mathbf{C} above the number from which the child counted on gives additional information for instruction.

You may write notes indicating the student's way of counting or thinking in the space after the answer.

Problem	Sample counting strategy (C)	Sample number relationship strategy (no C)
$1+8$	$2,3,4 \ldots$	next number
$5-4$	f (fingers)	parts of 5
$11-7$	$8,9,10,11$	$(7+3)+1$
4×6	$6,12,18,24$	$(2 \times 6) \times 2$

ACCURACY

Place a slash through the student's answer if it is incorrect

AUTOMATICITY

- Place a dot after the answer if a student takes longer than the expected $3-5$ second thinking time (See explanation to the left)

Grade Level	End of year proficiency	Fact Fluency Timeline	Scoring Rubric
Kindergarten	Addition within 5 Subtraction within 5	End of Year End of Year	$\begin{aligned} & \text { Secure - } 3 \\ & 18-20 / 20 \end{aligned}$
Ist grade	Addition within IO Subtraction within 10	Beg/Mid/End of Year Mid/End of Year	Developing - 2 \| 1 - 17 / 20
$\begin{aligned} & \text { 2nd } \\ & \text { grade } \end{aligned}$	Addition within 20 Subtraction within 20	Beg/Mid/End of Year Beg/Mid/End of Year	Beginning - I Below IO
3rd grade	Partial Multiplication/Division Multiplication within 100 Division within 100	Mid Year End of Year End of Year	* PASS ON ALL * END-OF-THE-YEAR FLUENCY Assessments, FOR STUDENTS
th/5th grade	Continuation of above	Assess as needed for students who were not proficient in 3 rd/4th	THAT DO NOT sCore Secure, TO THE NEXT GRADE LEVEL

Conducting the fact interviews:

\square Teacher discretion should be used on how to administer this assessment. You may give it orally, written, use flashcards, etc.
but MUST be done $1: 1$ with the teacher.
\square Find a place where you and the student can sit next to each other.
■ Have a student copy of the interview in front of the student and a teacher copy in front of you.
\square Say: "Today I'll be doing a math interview with you to learn more about your math thinking. Please keep your hands above the table."
v Say: "Look at each equation/problem. All you have to say out loud is the number that goes on each line."
\square Say: "Begin here," (point to the equation at the top of the column on the left) "and go down the column."
\square.If the student reads the equation aloud allow them to do so.
\square Write the number the student says for each equation on the line .
\square Use the coding system (see the coding responses for each interview) to indicate the student's strategies.
\square Abandon the interview if you become confident that the student does not have the thinking strategies required for a majority of the equations/ problems on the assessment.
\square If a student is using more than 3-5 seconds of think time, watch the student carefully. If you can determine that \mathbf{s} / he is using a counting strategy (mouthing numbers, nodding, tapping a foot, moving fingers slightly), code it as a counting on strategy.
\boxtimes Finish the interview by saying, "Thank you for sharing your thinking with me."
\square Count all the facts that meet the following three criteria: accuracy, automaticity, and number relationship strategies. In other words, count the responses that received no codes as defined in the coding responses at the bottom of each teacher copy.
*Teacher discretion should be used to make adjustments to more or less advanced * interviews based on the level of fluency demonstrated

Addition within 5	
$5+0=$	$2+2=$
$3+1=$	$2+1=$
$1+\mathrm{O}=$	$4+\mathrm{O}=$
$0+1=$	$4+1=$
$0+4=$	$\bigcirc+O=$
$1+2=$	$0+2=$
$1+4=$	$2+\mathrm{O}=$
$0+5=$	$1+3=$
$1+1=$	$3+2=$
$0+3=$	$2+3=$

\square Secure: 18-20 Developing: 11-17 Beginning: Below 10

Date

Subtraction within 5	
$-1=$	$4-2=$
$5-0=$	$5-4=$
$2-O=$	$4-4=$
$2-1=$	$5-5=$
$3-1=$	$3-0=$
$4-0=$	$3-2=$
$2-2=$	$5-2=$
$1-\mathrm{O}=$	$4-1=$
$5-1=$	$4-3=$
$3-3=$	$5-3=$

\square Secure: 18-20 $\quad \square$ Developing: 11-17 $\quad \square$ Beginning: Below 10

Coding Responses

\# Incorrect (not accurate)

- Longer than 5 seconds (not automatic); the 3-5 second expectation may be extended for learners who require extended language processing time.

C Counting (not using number relationship strategies)

Subtraction within 5

$1-1=$	$4-2=$
$5-\mathrm{O}=$	$5-4=$
$2-\mathrm{O}=$	$4-4=$
$2-1=$	$5-5=$
$3-1=$	$3-0=$
$4-0=$	$3-2=$
$2-2=$	$5-2=$
$1-0=$	$4-1=$
$5-1=$	$4-3=$
$3-3=$	$5-3=$

\qquad

Addition within 10	
$+7=$	$3+4=$
$4+2=$	$2+6=$
$3+3=$	$5+4=$
$6+2=$	$2+7=$
$4+6=$	$3+7=$
$2+4=$	$4+5=$
$3+5=$	$4+3=$
$4+4=$	$5+5=$
$3+6=$	$6+4=$
$6+3=$	$2+8=$

Subtraction within 10	
$10-6=$	$6-3=$
$8-4=$	$9-4=$
$10-7=$	$7-4=$
$8-5=$	$9-3=$
$9-8=$	$9-6=$
$9-7=$	$8-3=$
$8-6=$	$8-8=$
$10-4=$	$10-3=$
$10-8=$	$9-5=$
$7-5=$	$6-4=$

Beginning: Below 10

```
Coding Responses
\# Incorrect (not accurate)
- Longer than 5 seconds (not automatic); the 3-5 second expectation may be extended for learners who require extended language processing time.
C Counting (not using number relationship strategies)
```


Subtraction within 10

\qquad

Addition within 20	
$q+4=$	$6+8=$
$q+q=$	$5+7=$
$9+8=$	$6+9=$
$7+4=$	$5+6=$
$3+9=$	$8+7=$
$8+8=$	$7+8=$
$4+8=$	$6+6=$
$5+9=$	$6+7=$
$3+8=$	$7+9=$
$7+7=$	$5+8=$

\square Secure: 18-20 $\quad \square$ Developing: 11-17 \square Beginning: Below 10

Subtraction within 20		
$12-6=$	$14-8=$	
$12-8=$	$15-7=$	
$\\|-5=$	$15-8=$	
$11-8=$	$18-9=$	
$16-9=$	$14-7=$	
$11-7=$	$13-9=$	
$12-3=$	$17-8=$	
$13-6=$	$14-9=$	
$13-5=$	$12-7=$	
$16-7=$	$17-9=$	

\square Secure: 18-20 $\quad \square$ Developing: 11-17 \square Beginning: Below 10

Coding Responses
\# Incorrect (not accurate)

- Longer than 5 seconds (not automatic); the 3-5 second expectation may be extended for learners who require extended language processing time.

C Counting (not using number relationship strategies)

Subtraction within 20

Student	
Multiplication 0,1,2,4,8,5,10 Division 2,4	
$0 \times 3=$	$1 \times 4=$
$2 \times 4=$	$5 \times 8=$
$10 \times 2=$	$5 \times 4=$
$4 \times 6=$	$4 \times 4=$
$3 \times 2=$	$7 \times 4=$
$4 \times 8=$	$9 \div 2=$
$8 \times 3=$	$16 \div 4=$
$3 \times 10=$	$24 \div 4=$
$9 \times 4=$	$18 \div 2=$
$3 \times 9=$	$10 \div 2=$

\square Secure: 18-20 $\quad \square$ Developing: 11-17 $\quad \square$ Beginning: Below 10

Student __ Da	
Multiplication 0,1,2,4,8,5,10 Division 2,4	
$0 \times 3=$	$1 \times 4=$
$2 \times 4=$	$5 \times 8=$
$10 \times 2=$	$5 \times 4=$
$4 \times 6=$	$4 \times 4=$
$3 \times 2=$	$7 \times 4=$
$4 \times 8=$	$9 \div 2=$
$8 \times 3=$	$16 \div 4=$
$3 \times 10=$	$24 \div 4=$
$9 \times 4=$	$18 \div 2=$
$3 \times 9=$	$10 \div 2=$
\square Secure: 18-20 $\quad \square$ Developing: 11-17 \square Beginning: Below 10	
$\overline{\text { Coding responses }}$ - - -	
I* Incorrect (not accurate)	
1. Longer than 5 sec extended for lear IC Counting (not us	tic); the $3-5$ second expectation may b xtended language processing time. nship strategies)

Multiplication 0,1,2,4,8,5,10 Division 2,4

$0 \times 3=$	$1 \times 4=$
$2 \times 4=$	$5 \times 8=$
$10 \times 2=$	$5 \times 4=$
$4 \times 6=$	$4 \times 4=$
$3 \times 2=$	$7 \times 4=$
$4 \times 8=$	$9 \div 2=$
$8 \times 3=$	$16 \div 4=$
$3 \times 10=$	$24 \div 4=$
$9 \times 4=$	$18 \div 2=$
$3 \times 9=$	$10 \div 2=$

Student _ Date	
Multiplication within 100	
$8 \times 1=$	$5 \times 9=$
$4 \times 7=$	$6 \times 6=$
$5 \times 4=$	$3 \times 10=$
$8 \times 3=$	$6 \times 2=$
$0 \times \mathrm{q}=$	$10 \times 7=$
$6 \times 5=$	$2 \times 4=$
$9 \times 8=$	$3 \times 3=$
$6 \times 4=$	$7 \times 8=$
$4 \times 4=$	$5 \times 3=$
$3 \times 9=$	$6 \times 7=$

\square Secure: 18-20 $\quad \square$ Developing: 11-17 $\quad \square$ Beginning: Below 10

Division within 100	
$8 \div 1=$	$24 \div 3=$
$35 \div 5=$	$49 \div 7=$
$81 \div 9=$	$0 \div 12=$
$18 \div 3=$	$25 \div 5=$
$35 \div 7=$	$27 \div 9=$
$14 \div 2=$	$20 \div 4=$
$42 \div 6=$	$64 \div 8=$
$40 \div 10=$	$18 \div 2=$
$12 \div 4=$	$12 \div 6=$
$32 \div 8=$	$60 \div 10=$

\square Secure: 18-20 $\quad \square$ Developing: 11-17 $\quad \square$ Beginning: Below 10

Coding Responses

\# Incorrect (not accurate)

- Longer than 5 seconds (not automatic); the 3-5 second expectation may be extended for learners who require extended language processing time.

C Counting (not using number relationship strategies)

Multiplication within 100	
$8 \times 1=$	$5 \times 9=$
$4 \times 7=$	$6 \times 6=$
$5 \times 4=$	$3 \times 10=$
$8 \times 3=$	$6 \times 2=$
$0 \times 9=$	$10 \times 7=$
$6 \times 5=$	$2 \times 4=$
$9 \times 8=$	$3 \times 3=$
$6 \times 4=$	$7 \times 8=$
$4 \times 4=$	$5 \times 3=$
$3 \times 9=$	$6 \times 7=$

Division within 100

$8 \div 1=$	$24 \div 3=$
$35 \div 5=$	$49 \div 7=$
$81 \div 9=$	$0 \div 12=$
$18 \div 3=$	$25 \div 5=$
$35 \div 7=$	$27 \div 9=$
$14 \div 2=$	$20 \div 4=$
$42 \div 6=$	$64 \div 8=$
$40 \div 10=$	$18 \div 2=$
$12 \div 4=$	$12 \div 6=$
$32 \div 8=$	$60 \div 10=$

